Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Amino Acids ; 51(1): 139-150, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30353356

RESUMEN

Carnosine (b-alanyl-L-histidine) is an endogenous dipeptide widely distributed in excitable tissues, such as muscle and neural tissues-though in minor concentrations in the latter. Multiple benefits have been attributed to carnosine: direct and indirect antioxidant effect, antiglycating, metal-chelating, chaperone and pH-buffering activity. Thus, carnosine turns out to be a multipotent protector against oxidative damage. However, the role of carnosine in the brain remains unclear. The key aspects concerning carnosine in the brain reviewed are as follows: its concentration and bioavailability, mechanisms of action in neuronal and glial cells, beneficial effects in human studies. Recent literature data and the results of our own research are summarized here. This review covers studies of carnosine effects on both in vitro and in vivo models of cerebral damage, such as neurodegenerative disorders and ischemic injuries and the data on its physiological actions on neuronal signaling and cerebral functions. Besides its antioxidant and homeostatic properties, new potential roles of carnosine in the brain are discussed.


Asunto(s)
Isquemia Encefálica/fisiopatología , Carnosina/farmacología , Enfermedades Neurodegenerativas/fisiopatología , Fármacos Neuroprotectores/farmacología , Neurotransmisores/farmacología , Animales , Homeostasis/efectos de los fármacos , Humanos
2.
Biomed Khim ; 64(3): 268-275, 2018 Jun.
Artículo en Ruso | MEDLINE | ID: mdl-29964264

RESUMEN

Synthesis of lipoilcarnosine (LipC) - a conjugated molecule based on two natural antioxidants, carnosine and a-lipoic acid, is described. Its physico-chemical, antioxidant properties and biological activity are characterized. According to reversed-phase HPLC with a UV detector, purity of the final product was 89.3%. The individuality of the obtained sodium salt of LipC was confirmed by tandem HPLC-mass spectrometry. High resistance of LipC to hydrolysis with serum carnosinase was demonstrated. The antioxidant activity of LipC measured by reaction with the formation of thiobarbituric acid reacting substances and kinetic parameters of iron-induced chemiluminescence was higher than that of carnosine and lipoic acid. LipC did not affect viability of SH-SY5Y human neuroblastoma culture cells, differentiated towards the dopaminergic type, at concentrations not exceeding 5 mM. At the concentration range of 0.1-0.25 mM LipC protected neuronal cells against 1-methyl-4-phenylpyridinium (MPP + )-induced toxicity.


Asunto(s)
Antioxidantes , Carnosina , Intoxicación por MPTP/tratamiento farmacológico , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Carnosina/análogos & derivados , Carnosina/síntesis química , Carnosina/química , Carnosina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología
3.
Biochemistry (Mosc) ; 83(2): 140-151, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29618300

RESUMEN

Binding to Na+,K+-ATPase, cardiotonic steroids (CTS) activate intracellular signaling cascades that affect gene expression and regulation of proliferation and apoptosis in cells. Ouabain is the main CTS used for studying these processes. The effects of other CTS on nervous tissue are practically uncharacterized. Previously, we have shown that ouabain affects the activation of mitogen-activated protein kinases (MAP kinases) ERK1/2, p38, and JNK. In this study, we compared the effects of digoxin and bufalin, which belong to different subclasses of CTS, on primary culture of rat cortical cells. We found that CTS toxicity is not directly related to the degree of Na+,K+-ATPase inhibition, and that bufalin and digoxin, like ouabain, are capable of activating ERK1/2 and p38, but with different concentration and time profiles. Unlike bufalin and ouabain, digoxin did not decrease JNK activation after long-term incubation. We concluded that the toxic effect of CTS in concentrations that inhibit less than 80% of Na+,K+-ATPase activity is related to ERK1/2 activation as well as the complex profile of MAP kinase activation. A direct correlation between Na+,K+-ATPase inhibition and the degree of MAP kinase activation is only observed for ERK1/2. The different action of the three CTS on JNK and p38 activation may indicate that it is associated with intracellular signaling cascades triggered by protein-protein interactions between Na+,K+-ATPase and various partner proteins. Activation of MAP kinase pathways by these CTS occurs at concentrations that inhibit Na+,K+-ATPase containing the α1 subunit, suggesting that these signaling cascades are realized via α1. The results show that the signaling processes in neurons caused by CTS can differ not only because of different inhibitory constants for Na+,K+-ATPase.


Asunto(s)
Bufanólidos/metabolismo , Digoxina/metabolismo , Neuronas/metabolismo , Ouabaína/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Bufanólidos/química , Bufanólidos/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cerebro/citología , Digoxina/química , Digoxina/toxicidad , Activación Enzimática/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Microsomas/enzimología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Ouabaína/química , Ouabaína/toxicidad , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Biochemistry (Mosc) ; 81(5): 511-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27297901

RESUMEN

Dipeptide carnosine (ß-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatography-mass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells.


Asunto(s)
Carnosina/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Amidinas/toxicidad , Animales , Antioxidantes/farmacología , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Wistar , Espectrometría de Masa por Ionización de Electrospray
5.
Acta Naturae ; 7(4): 146-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26798503

RESUMEN

Parkinson's disease is caused by the degeneration of midbrain dopaminergic neurons. A rare recessive form of the disease may be caused by a mutation in the PARK2 gene, whose product, Parkin, controls mitophagy and programmed cell death. The level of pro- and anti-apoptotic factors of the Bcl-2 family was determined in dopaminergic neurons derived from the induced pluripotent stem cells of a healthy donor and a Parkinson's disease patient bearing PARK2 mutations. Western blotting was used to study the ratios of Bax, Bak, Bcl-2, Bcl-XL, and Bcl-W proteins. The pro-apoptotic Bak protein level in PARK2-neurons was shown to be two times lower than that in healthy cells. In contrast, the expression of the anti-apoptotic factors Bcl-XL, Bcl-W, and Bcl-2 was statistically significantly higher in the mutant cells compared to healthy dopaminergic neurons. These results indicate that PARK2 mutations are accompanied by an imbalance in programmed cell death systems in which non-apoptotic molecular mechanisms play the leading role.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...